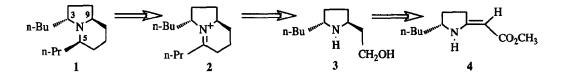
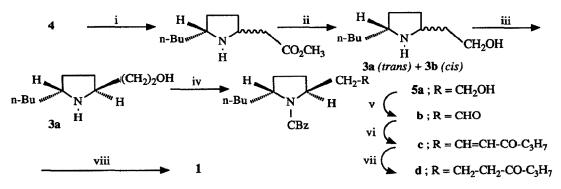
ENANTIOSELECTIVE SYNTHESIS OF (-)-GEPHYROTOXINE 223AB [(3R,5R,9R)-3-BUTYL-5-PROPYLOCTAHYDROINDOLIZINE]

Anne Fleurant, Jean Pierre Célérier, and Gérard Lhommet*


Université P. et M. Curie. Laboratoire de Chimie des Hétérocycles, CNRS ERS 73. 4 Place Jussieu, 75252 Paris cedex 05. France

(Received in UK 18 March 1993)


Summary: A highly enantioselective synthesis of the dendrobatid indolizidine alkaloid 223AB is described using a chiral amino acid as starting material.

Numerous indolizidine alkaloids bearing alkyl appendages have been isolated from the skin secretions of neotropical frogs in the genus *Dendrobatidae* and present significant neuromuscular activity¹. The first indolizidine isolated was the gephyrotoxin GTX 223AB 1 and its correct relative stereochemistry was established in 1981². Then the absolute configuration was proved to be 3R,5R,9R in 1985^{3a}. Several stereospecific syntheses of this compound were since reported but only three of them were enantioselective³.

In this paper we report a highly enantioselective strategy for the synthesis of (-)-indolizidine 223AB 1 with control of both relative and absolute configuration. We had previously shown that the key step of the synthesis of 5-propyloctahydroindolizine depended on the diastereoselective reduction of the iminium intermediate⁴. As the disconnective analysis shows, this synthesis depends on this reaction step for the C-5 absolute configuration but also on the diastereoselective preparation of the amino alcohol intermediate 3 for the C-9 absolute configuration from the β -enamino ester 4.

The compound 4 was prepared in seven steps from (S)-pyroglutamic acid in 26% overall yield⁵, and then transformed in two steps into a diastereomeric mixture 1/1 of *trans* and *cis* cyclic amino alcohols 3a and 3b using firstly NaBH₄ in MeOH then LiAlH₄ in ether as reducing agents. The pure *trans* amino alcohol 3a ($[\alpha]^{22}_{D}$ -20.2 c=0.56, HCCl₃) was isolated during the selective acylation of *cis* cyclic amino alcohol 3b⁶. The compound 3a was then transformed into the carbamate 5a; after oxidation of 5a with the Corey-Suggs oxidizing reagent⁷ leading to the amino aldehyde 5b, subsequent Wittig reaction of 5b with 1-triphenylphosphoranylidene-pentan-2-one provided 5c as a mixture of geometric isomers. This mixture was of no consequence, as both of the Z and E alkenes were catalytically reduced to lead to the single diastereoisomer 5d, direct precursor of compound 1, in 42% overall yield from 3 ($[\alpha]^{20}_D$ -52.5; c=0.63, CH₂Cl₂). Hydrogenation of 5d, and of the iminium intermediate 2 over Pd/C in methanol provided a single crude diastereoisomer, which stereochemistry was unambiguously determined by ¹H and ¹³C NMR spectroscopy. Finally, purification by flash chromatography on alumina (ether-pentane: 2/8) gave the optically pure (-)-(3R,5R,9R)-3-butyl-5-propyloctahydroindolizine 1 in 85% yield⁸.

Reaction conditions: i) NaBH₄ 3eq., $Et_2O.BF_3$ 2 eq., CH_2Cl_2 ; ii) LiAlH₄, ether reflux; iii) diastereometric separation⁶; iv) CBzCl, K_2CO_3 , acetone; v) PCC, CH_2Cl_2 ; vi) Ph₃P=CH-CO-C₃H₇, THF reflux; vii) H₂/PtO₂, MeOH; viii) H₂/Pd-C, MeOH.

This present synthesis is an easy and highly enantioselective route to dialkyl indolizidines.

Aknowledgment: We are grateful to U.C.I.B. (Usines Chimiques d'Ivry-la-Bataille, France) for the generous gift of (S)-pyroglutamic acid.

References

- 1. For a detailed account of the isolation and structure of the Dendrobated alkaloids including indolizidine 223AB, see: Daly, J.W.; Spande, T.F. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S.W., Ed.; Wiley: New York, 1986; Vol. 4, Chapter 1, pp 1-274.
- 2. Spande, T.F.; Daly, J.W.; Hart, D.J.; Tsai, Y.M.; Macdonald, T.L. Experientia 1981, 37, 1242.
- (a) Royer, J.; Husson, H.P. Tetrahedron Lett. 1985, 26, 1515. (b) Machinaga, N.; Kibayashi, C. J. Org. Chem. 1992, 57, 5178. (c) Taber, D.F.; Deker, P.B.; Silverberg, L.J. J. Org. Chem. 1992, 57, 5990.
- 4. Fleurant, A.; Célérier, J.P.; Lhommet, G. Tetrahedron Asymmetry 1992, 3, 695.
- 5. Saliou, C.; Fleurant, A.; Célérier, J.P.; Lhommet, G. Tetrahedron Lett. 1991, 28, 3365.
- 6. Fleurant, A.; Grandjean, C.; Provot, O.; Rosset, S.; Célérier, J.P.; Lhommet, G. Heterocycles, in press.
- 7. Corey, E.J.; Suggs, J.W. Tetrahedron Lett. 1975, 2647.
- Satisfactory analytical and spectral data were obtained for (-)-3-butyl-5-propyl-octahydroindolizine 1. [α]²⁰_D= -103 (c=1.12, Hexane); IR (neat) v(cm⁻¹)= 2960, 2940, 2860, 2800, 1460, 1440; ¹H-NMR (200 MHz, CDCl₃) δ(ppm)= 0.84 (t, 3H, J=7 Hz); 0.88 (t, 3H, J=7 Hz), 1.00-1.95 (m, 20H); 2.30-2.50 (m, 2H); 3.25-3.40 (m, 1H); ¹³C-NMR (50 MHz, CDCl₃) δ(ppm)= 14.2, 14.5, 19.1, 23.0, 24.5, 25.3, 26.2, 29.0, 29.8, 30.3, 31.9, 35.5, 57.0, 58.7, 59.5.